Declining fertility and economic well-being: do education and health ride to the rescue?

by Klaus Prettner, David Bloom, Holger Strulik

No. 2012/03
Declining fertility and economic well-being: Do education and health ride to the rescue?

by Klaus Prettner, David Bloom, Holger Strulik

The WDA-HSG Discussion Paper Series on Demographic Issues
No. 2012/03

MANAGING EDITORS:

Monika BÜTLER Professor, University of St.Gallen, Switzerland
Ilona KICKBUSCH Professor, The Graduate Institute of International and Development Studies, Switzerland
Alfonso SOUSA-POZA Secretary, WDA Forum Foundation, Switzerland
Professor, University of Hohenheim-Stuttgart, Germany

ADVISORY BOARD OF THE WDA FORUM:

Isabella ABODERIN Senior Research Fellow, Oxford Institute of Ageing, University of Oxford, UK
Jane BARRATT Secretary General, International Federation on Ageing (IFA), Canada
John BEARD Director, Department of Ageing and Life Course, WHO, Geneva (observer status)
Marcel F. BISCHOF Founder of WDA, Spain
Richard BLEWITT CEO, HelpAge International, UK
David E. BLOOM Clarence James Gamble Professor of Economics and Demography, Harvard University, USA
Xiao CAIWEI Assistant President, China National Committee on Ageing (CNCA), China
Sarah HARPER Director of the Oxford Institute of Ageing, UK
Werner HAUG Director, Technical Division, United Nations Population Fund, New York
Dalmer HOSKINS Director, Office of Policy Development and Liaison for Public Trustees, US Social Security Administration, USA
Alexandre KALACHE Head, International Centre for Policies on Ageing, Rio de Janeiro, Brazil
Nabil M. KRONFOL Co-Founder, Center for Studies on Aging in Lebanon, Lebanon
Andreas KRUSE Director, Institute of Gerontology, Ruprechts-Karls Universität Heidelberg
Ariela LOWENSTEIN Head, Center for Research & Study of Aging, University of Haifa, Israel
Desmond O’NEILL President of the European Union Geriatric Medicine Society, Ireland
Hubert ÖSTERLE Professor for Information Management, University of St. Gallen, Switzerland
Anne-Sophie PARENT Secretary General, AGE Platform Europe
Ursula M. STAUDINGER Professor and President, German Psychological Society, Vice President Jacobs University Bremen, Germany
Richard G. WILKINS Executive Director, Doha International Institute for Family Studies and Development, Qatar

Main partners of the WDA Forum are:

Merck & Co., Inc.
Pfizer
SDC – Swiss Agency for Cooperation and Development
University of St.Gallen

The opinions expressed in this article do not necessarily represent those of the WDA Forum.
"Too sick to prosper: Russia’s ongoing health crisis obstructs economic growth and development",
No. 2009/2

David E. Bloom, David Canning, Michael Moore and Younghwan Song,
“Global demography: fact, force and future”,
No. 2006/1

David E. Bloom, David Canning, “The effect of subjective survival probabilities on retirement and wealth in the United States”,
No. 2007/1

Glenda Quintini, John P. Martin and Sébastien Martin,
“The changing nature of the school-to-work transition process in OECD countries”,
No. 2007/2

David Bell, Alison Bowes and Axel Heitmüller,
“Did the Introduction of Free Personal Care in Scotland Result in a Reduction of Informal Care?”,
No. 2007/3

Alexandre Sidorenko,
“International Action on Ageing: Where Do We Stand?”,
No. 2007/4

Lord Adair Turner of Ecchinswell,
“Population ageing or population growth: What should we worry about?”,
No. 2007/5

Isabella Aboderin and Monica Ferreira,
“Linking Ageing to Development Agendas in sub-Saharan Africa: Challenges and Approaches”,
No. 2008/1

Aurore Flipo, Hélène Derieux and Janna Miletzki,
“Future Demographic Challenges in Europe: The Urgency to Improve the Management of Dementia”,
No. 2009/2

Nicholas Eberstadt and Hans Groth,
No. 2010/6

Alexandre Sidorenko,
“Population Ageing in the Countries of the Former Soviet Union: Concerns and Responses”,
No. 2010/7

David E. Bloom, Ajay Mahal, Larry Rosenberg and Jaypee Sevilla,
“Economic Security Arrangements in the Context of Population Aging in India”,
No. 2010/8

David E. Bloom and Roddy McKinnon,
“Social Security and the Challenge of Demographic Change”,
No. 2010/9

David E. Bloom,
“Population Dynamics in India and Implications for Economic Growth”,
No. 2011/1

David E. Bloom, David Canning and Günther Fink,
“Implications of Population Aging for Economic Growth”,
No. 2011/2

David E. Bloom, David Canning and Larry Rosenberg,
“Demographic Change and Economic Growth in South Asia”,
No. 2011/3

David E. Bloom and Larry Rosenberg,
“The Future of South Asia: Population Dynamics, Economic Prospects, and Regional Coherence”,
No. 2011/4

Michael Herrmann,
“The Economic Analysis of Population Aging: Implications for Policy Making”,
No. 2012/5

Hans Groth and Felix Gutzwiller,
“The Future of Dementia”,
No. 2012/6

David E. Bloom, Alex Boersch-supan, Patrick McGee and Atsushi Seike,
“Population Ageing: Facts, Challenges, and Responses”,
No. 2011/7

Nabil M. Kronfol,
“The Youth Bulge and the Changing Demographics in the MENA Region: Challenges and Opportunities?”,
No. 2011/8

Marc Trippel and Hans Groth,
“Demographic Shifts in EU 27, Norway and Switzerland: Population and Dependency Ratio Forecasts until 2030”,
No. 2011/9

Marc Trippel and Hans Groth,
No. 2011/10

V. Vandenbergh,
“Are firms willing to employ a greying and feminizing workforce?”
No. 2012/1

Sang Hyop-Lee,
“Productivity of Older Workers, Pension Reform and Savings: An international comparison”,
No. 2012/2

Previous Letters:

Ariela Lowenstein,
“The Israeli experience of advancing policy and practice in the area of elder abuse and neglect”,
No. 2007/1

Jeffrey L. Sturchio & Melinda E. Hanisch,
“Ageing and the challenge of chronic disease: do present policies have a future?”,
No. 2007/2

Summary of a Special Session with: Bengt Jonsson (chair), Michaela Diamant, Herta Marie Rack and Tony O’Sullivan,
“Innovative approaches to managing the diabetes epidemic”,
No. 2007/3

Baroness Sally Greengross,
“Human Rights Across the Generations in Ageing Societies”,
No. 2008/1

Marie F. Smith,
“The Role of Lifelong Learning in Successful Ageing”,
No. 2008/2

Aurore Flipo, Hélène Derieux and Janna Miletzki,
“Three Student Essays on Demographic Change and Migration”,
No. 2009/1

Nicholas Eberstadt & Hans Groth,
“Too sick to prosper: Russia’s ongoing health crisis obstructs economic growth and development”,
No. 2009/2

Previous Discussion Papers:

David E. Bloom and David Canning,
“Global demography: fact, force and future”,
No. 2006/1

David E. Bloom, David Canning, Michael Moore and Younghwan Song,
“Global demography: fact, force and future”,
No. 2006/1

Ronald Lee and Andrew Mason,
“Fertility, Human Capital, and Economic Growth over the Demographic Transition”,
No. 2008/3

Svend E. Hougaard Jensen and Ole Hagen Jærgensen,
“Low Fertility, Labour Supply, and Retirement in Europe”,
No. 2008/3

Ronald Lee and Andrew Mason,
“Fertility, Human Capital, and Economic Growth over the Demographic Transition”,
No. 2008/4

Asgar Zaidi and Alexandre Sidorenko,
“Features and Challenges of Population Ageing using the European Perspective”,
No. 2008/5

David E. Bloom, David Canning, Günther Fink and Jocelyn E. Finlay,
“The High Cost of Low Fertility in Europe”,
No. 2008/6

Robert L. Clark, Nachiro Ogawa, Makoto Kondo and Rikuya Matsuura,
No. 2009/1

Ivan Zanac, Daniel Hallberg and Thomas Lindh,
“Low Fertility and Long Run Growth in an Economy with a Large Public Sector”,
No. 2009/2

Hans Groth,
“Switzerland and its Demography”,
No. 2009/3

Hans Groth, Reiner Klingholz and Martin Wehling,
“Future Demographic Challenges in Europe: The Urgency to Improve the Management of Dementia”,
No. 2009/4

David N.F. Bell and Robert A. Hart,
“Retire Later or Work Harder?”,
No. 2010/1

Oussmane Faye,
“Basic Pensions and Poverty Reduction in sub-Saharan Africa”,
No. 2010/2

David E. Bloom and Alfonso Sousa-Poza,
“The Economic Consequences of Low Fertility in Europe”,
No. 2010/3
Declining fertility and economic well-being: do education and health ride to the rescue?

Klaus Prettnera, David E. Blooma, Holger Strulikb

\textsuperscript{a) Harvard University
Center for Population and Development Studies
9 Bow Street
Cambridge, MA 02138, USA

\textsuperscript{b) University of Hannover
Wirtschaftswissenschaftliche Fakultät
Königsworther Platz 1
30167 Hannover, Germany

Abstract

It is widely argued that declining fertility slows the pace of economic growth through its negative effect on labor supply. There are, however, theoretical arguments suggesting that the effect of falling fertility on effective labor supply can be offset by the associated behavioral changes. We formalize these arguments by setting forth a dynamic consumer optimization model that incorporates endogenous fertility as well as endogenous educational and health investments. The model shows that a fertility decline induces higher education and health investments that are able to compensate for declining fertility under certain circumstances. We assess the theoretical implications by investigating panel data for 118 countries over the period 1980 to 2005 and show that behavioral changes partly mitigate the negative impact of declining fertility on effective labor supply.

\textbf{JEL classification:} I15, I25, J24, O47

\textbf{Keywords:} demographic change, effective labor supply, human capital, population health, economic growth
1 Introduction

Declining fertility is among the most salient features of global demography. The global total fertility rate (TFR) fell from 5 children per woman in 1950 to 2.5 in 2011, and United Nations (2011) project a further drop to 2.2 by 2050. In industrialized countries the TFR already reached far lower levels. For example, Strulik et al. (2011) show that all G-8 countries had to face below-replacement fertility in 2005 — the updated figures for 2011 are displayed in Table 1 — and Herzer et al. (2010) argue that there is barely any sign that these rates will recover again in the near future. This development will have a pronounced impact on the workforce of the corresponding countries. While the baby booms caused by increased fertility after World War II resulted in large cohorts entering the labor market in the 1960s and 1970s, these workers are now moving toward the 60+ age range and starting to retire. Consequently, a substantial decline in the working age population can be expected to prevail in the next two decades.

Table 1: TFR for the G-8 countries in 2011

<table>
<thead>
<tr>
<th>Country</th>
<th>TFR 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>2.08</td>
</tr>
<tr>
<td>U.K.</td>
<td>1.87</td>
</tr>
<tr>
<td>Russia</td>
<td>1.51</td>
</tr>
<tr>
<td>Germany</td>
<td>1.42</td>
</tr>
<tr>
<td>France</td>
<td>1.99</td>
</tr>
<tr>
<td>Canada</td>
<td>1.69</td>
</tr>
<tr>
<td>Italy</td>
<td>1.45</td>
</tr>
<tr>
<td>Japan</td>
<td>1.38</td>
</tr>
</tbody>
</table>

Some “alarmist” concerns have been articulated by various public intellectuals on the consequences of these demographic developments. For example, Peterson (1999) describes global aging as a “threat more grave and certain than those posed by chemical weapons, nuclear proliferation, or ethnic strife”. Others have expressed concerns in more measured terms. The World Economic Forum (2004) suggests that with increasing numbers of non-working elderly, “we face the prospect that the historical rates of improvement in standards of living might slow or even decline.” Furthermore, in the last two years “The Economist” has devoted three special reports to demographic change and its economic consequences which — in monetary terms — are expected to dwarf the burden associated with the current economic and financial crisis (The Economist, 2009, 2011a,b). All these examples point toward the topic’s high profile in the public debate, emphasizing...
the need for a detailed economic investigation.

In recent years, economists have begun to devote greater attention to the implications of population aging in general and declining fertility in particular. One major concern is that when larger and older cohorts retire, while smaller and younger cohorts enter the labor market, the support ratio will decline and fewer and fewer workers will have to produce the output which is consumed by all the individuals in the economy. This scenario is often referred to as the “accounting effect” of demographic change (see for example Gruescu, 2007; Bloom et al., 2010). Another concern has to do with the fiscal integrity of pay-as-you-go pensions and social security systems in general (cf. Gruber and Wise, 1998; Gertler, 1999; Bloom et al., 2007). Yet another concern has to do with future asset values insofar as the elderly liquidate their assets to finance their consumption in old age (cf. Börsch-Suppan and Ludwig, 2009).

Do economists share these concerns? In general, yes, but their verdict is much less alarmist. That is because economists also take into account the fact that changing demographics will catalyze various behavioral changes that will ameliorate the negative economic effects of declining fertility. For example, female labor force participation rates are expected to rise in response to low fertility (cf. Bloom et al., 2009) and savings rates may increase in response to longer anticipated periods of retirement (cf. Bloom et al., 2007). These aspects have been referred to as the “behavioral effects” of demographic change.

In this paper we are particularly interested in the impact of declining fertility on an economy’s aggregate human capital stock. The reason is that its supply is decisive for long-run economic development in the context of research and development (R&D) based economic growth theory (see for example Romer, 1990; Aghion and Howitt, 1992; Jones, 1995; Segerström, 1998). This strand of research emphasizes the need of having either a large population size or fast population growth to avoid economic stagnation in the long run.

Specifically, the argument runs as follows. Assume (i) that effective labor input is a simple compound of the number of workers times their human capital, \(H = L \cdot h \), (ii) that a constant fraction \(\gamma \) of aggregate labor is allocated to R&D, (iii) that aggregate output is produced via a Cobb-Douglas technology from effective labor and capital given factor pro-
ductivity A, $Y = K^\alpha [A(1 - \gamma)H]^{1-\alpha}$, and (iv) that advances of factor productivity are produced by R&D via another Cobb-Douglas technology, $\dot{A} = A^\phi H^{\nu} \cdot \gamma H$. Then, ceteris paribus, declining fertility leads to lower economic growth because it reduces the number of workers L and thus the effective labor input in R&D. The claim can easily be verified by differentiating aggregate production with respect to time, imposing the steady-state condition $\dot{Y}/Y = \dot{H}/H = \dot{K}/K$, and inserting R&D output, which provides $\dot{Y}/Y = A^{\phi-1}(\gamma hL)^\nu$. \(^1\)

In the conclusion we briefly discuss the assumptions under which the result is derived. In the main text, we do not question the assumptions but the meaningfulness of the ceteris paribus condition. We argue that, at the micro-level, there is a child quantity-quality tradeoff at work, implying that declining fertility goes hand in hand with increasing human capital endowment per person in terms of education and health. With the tradeoff operative, declining fertility does not only imply a smaller workforce L in the next generation but also a higher quality endowment h per worker. It is thus a priori unclear whether effective labor input and thus economic growth (according to the conventional theory) declines or not.

The child quantity-quality channel constitutes one potential explanation of why empirical studies so far have failed to corroborate the pessimistic prediction from conventional growth theory, instead supporting a negative association between economic growth and population growth (see for example Brander and Dowrick, 1994; Kelley and Schmidt, 1995; Ahituv, 2001; Bernanke and Gürkaynak, 2001). As a consequence, there has been a growing literature trying to reconcile the theoretical predictions with empirical evidence by showing that there exist mechanisms that could avert the negative economic impact of decreasing fertility (see for example Dalgard and Kreiner, 2001; Strulik, 2005; Strulik et al., 2011). These models build upon the crucial insight already expressed in Lucas (1988) and Mankiw et al. (1992) and further analyzed for example by Lee and Mason (2010) that it is not the sheer size of the labor force that matters for economic prosperity but also its quality as represented by the average level of education.

A similar argument could also be made about another dimension of human capital that is often neglected in this context — namely, personal health

\(^1\)See Prettner and Prskawetz (2010) for an overview on the demographic aspects of selected R&D based growth models.
(see for example Bloom and Canning, 2000; Shastry and Weil, 2003; Weil, 2007; Ashraf et al., 2008; Lee and Mason, 2010). If individuals divert resources they would have spent on raising children to investments in their own health, it could increase their productivity and thus the aggregate effective labor supply. In our paper we aim to extend the notion of human capital in the growth literature to include this important dimension. Thus, we are concerned with the question whether the relative decrease of the effective labor force expected owing to fertility decreases can be mitigated by the associated behavioral change toward higher investments in children’s education and own health.

To investigate this issue, we set up a standard overlapping generations model augmented by a fertility decision and child quality-quantity tradeoff as described in Becker (1993). In this framework we introduce endogenous investments into adult health. Educational and health investments translate into individual labor productivity along the lines of Mincer (1974). Our central result is that decreasing fertility corresponds with an increasing effective labor force if the associated larger investments into education for children and adult health affect individual human capital sufficiently strongly — that is, if the corresponding behavioral changes toward a higher-quality labor force are able to overcompensate for the negative effect toward its lower quantity.²

We then empirically assess the presence of the outlined mechanism from a macroeconomic perspective and test whether the conditions for the positive impact of declining fertility on aggregate human capital are met. Our results indicate that the quality-quantity tradeoff is present with respect to both quality dimensions: education and health. Furthermore, we show that the theoretically outlined quality-quantity tradeoff mechanism ensures that parts of the negative economic consequences of declining fertility are averted. Nevertheless, the quantity-quality substitution alone appears to be too weak to completely overturn the negative impact of declining fertility on the aggregate human capital.

The paper proceeds as follows: Section 2 sets up the model and motivates the central mechanism on which we base our empirical investigations.

²Facing below-replacement fertility indefinitely would, of course, imply that the aggregate labor force converges toward zero. We thus do not claim that our model is an accurate description in such an extreme setting but that it represents a reasonable approximation of future developments in the medium run.
Section 3 presents our empirical strategy and the results. Finally, Section 4 discusses these results and their implications.

2 Theoretical Foundation

Consider an economy in which adult individuals live for two periods. In the first period they supply their skills on the labor market and choose consumption, savings for retirement, investments into their health, fertility (quantity), and education (quality) of their children to maximize their lifetime utility. In the second period they consume the proceeds of their savings and expire. The lifetime utility experienced by an individual born at time t is given by the logarithmic function

$$u = \log(c_t) + \beta \log(R_{t+1}s_t) + \eta \log(n_t) + \gamma \log(e_t) + \kappa \log(p_t),$$ \hspace{0.5cm} (1)

where c_t refers to consumption in period t, $1 > \beta > 0$ is the discount factor, R_{t+1} is the gross interest rate between period t and period $t+1$, s_t are savings carried over from period t to period $t+1$ such that the composite $R_{t+1}s_t$ denotes consumption in period $t+1$, $\eta > 0$ is the weight of the number of children n_t in utility, and $\gamma > 0$ is the weight for education per child e_t. Finally, κ denotes the weight an individual puts on her own physical health, which is itself assumed to depend positively on health spending p_t.\footnote{In this discrete time overlapping generations formulation, the appropriate interpretation is that health spending reduces morbidity. It does not matter qualitatively whether there is a positive utility effect of health spending itself or a negative utility effect of morbidity.}

Following Galor and Weil (2000), the costs of investments into the quantity of children are modeled as foregone wages, while the costs of investments into their quality are modeled as linearly increasing in education. This implies that the budget constraint of an individual reads

$$w_t(1 - \tau n_t) = c_t + s_t + e_t n_t + p_t, \hspace{0.5cm} (2)$$

where $\tau > 0$ represents the fixed costs of each child and w_t is the wage that an individual could earn if she supplies her whole available time on the labor market. This equation states that total lifetime income has to be equal to total lifetime expenditure on utility generating activities and goods. The individual can therefore spend her income in period t on consumption,
savings, health, bringing up uneducated children (quantity) and investing in the human capital of each child (quality).

This setup represents a simple and intuitive way to motivate the central mechanism we want to assess. For the sake of tractability, our modeling abstracts from issues like i) an explicit treatment of the governmental sector\(^4\), ii) investments in own education and investments in children’s health although we acknowledge that these represent other important channels (cf. Cunha and Heckman, 2009; Dalgaard and Strulik, 2011); iii) anticipated feedback effects between health and wages to keep the model solvable, iv) all types of matching issues, v) indivisibility of the number of children, and vi) heterogeneity of households.

The solution to the optimization problem is represented by the following set of expressions for optimal consumption \(c_t\), saving \(s_t\), health expenditure \(p_t\), education \(e_t\) and fertility \(n_t\):

\[
c_t = \frac{w_t}{\beta + \eta + \kappa + 1},
\]

\[
s_t = \frac{\beta w_t}{\beta + \eta + \kappa + 1},
\]

\[
p_t = \frac{\kappa w_t}{\beta + \eta + \kappa + 1},
\]

\[
e_t = \frac{\gamma \tau w_t}{\eta - \gamma},
\]

\[
n_t = \frac{\eta - \gamma}{(\beta + \eta + \kappa + 1)\tau}.
\]

These results require the weight of the number of children in utility to exceed the weight of education, i.e., \(\eta > \gamma\), otherwise parents would prefer to have no children at all and we would end up with a degenerate corner solution. We restrict our attention to the economically meaningful interior solution and assume that \(\eta > \gamma\) holds. Inspecting the optimal solution we arrive at the following comparative static results.

Remark 1. If individuals put more weight on the number of children in utility, they increase fertility and reduce consumption, savings, health investments, and education of their children.

\(^4\)The results would be qualitatively similar if the government provides health and education and finances the related expenditures via taxes. The introduction of a government run pay-as-you-go pension system would mainly lead to a crowding out of private savings, an effect that is not a focus of our study.
Proof. By investigating equations (3), (4), (5) and (6), we immediately see that a higher η means lower consumption, savings, and health and educational investments. To see the effect on fertility, we take the derivative of n_t with respect to η,

$$\frac{\partial n_t}{\partial \eta} = \frac{\beta + \gamma + \kappa + 1}{(\beta + \eta + \kappa + 1)^2 \tau},$$

which is unambiguously positive. \hfill \Box

Remark 2. If individuals put more weight on education in utility, they reduce fertility, increase educational investments, and hold consumption, savings and health investments constant.

Proof. Obvious from inspecting equations (3) – (7) for higher γ. \hfill \Box

Remarks 1 and 2 reflect the well-known child quantity-quality tradeoff as described in Becker (1993). If parents want better educated children, they decrease fertility and increase education, while the converse holds true if they want more children. Furthermore, we summarize the effects of increasing health investments in the following remark.

Remark 3. If individuals put more weight on health in utility, they reduce consumption, savings and fertility, increase health investments, and hold educational investments constant.

Proof. By investigating equations (3), (4), (6) and (7) for higher κ we immediately see that educational investments are not affected and that consumption, savings and fertility decrease. To see the effect on health investments we take the derivative of p_t with respect to κ,

$$\frac{\partial p_t}{\partial \kappa} = \frac{(\beta + \eta + 1)w_t}{(\beta + \eta + \kappa + 1)^2},$$

which is unambiguously positive. \hfill \Box

Altogether we see that there is a crucial tradeoff between educational investments and health investments on the one hand and the number of children on the other hand. The former two can also be regarded as investments in labor quality (that is, the productivity of individuals), while the latter can be regarded as an investment in the labor quantity (that is, the number of individuals). The crucial question we have to address is how this
tradeoff on the micro level affects effective labor supply on the macro level. In so doing we assume that investments in children translate into effective years of schooling, denoted as \tilde{e}_{t+1}, according to

$$\tilde{e}_{t+1} = \xi \frac{e_t}{w_t},$$

(10)

where ξ is the productivity of the education sector. We divide by wages to control for a general increase in schooling costs which are assumed to rise with wages — that is, the renumeration of professors and teachers. By the same token we assume that the health sector produces individual physical health (an inverse measure of morbidity), denoted as \tilde{p}_t, according to

$$\tilde{p}_t = \zeta \frac{p_t}{w_t},$$

(11)

where ζ refers to the productivity of the health sector and we again control for an increase in prices over time as approximated by the wages of doctors and nurses.

We next assume consistent with Mincer (1974) and following Hall and Jones (1999), Bils and Klenow (2000), Caselli (2005), and Bloom and Canning (2005) that human capital of an individual — that is, its productivity, which we denote by h_t — can be described according to

$$h_t = \exp \left\{ \phi (\tilde{e}_{t-1}) + \psi (\tilde{p}_t) \right\},$$

(12)

where ϕ and ψ with the properties $\phi'(\tilde{e}_{t-1}) > 0$ and $\psi'(\tilde{p}_t) > 0$ are functions relating individual human capital to years of schooling and health status.

The extent to which more education and better health matters for productivity depends upon the functions ϕ and ψ. We follow the conventional assumption in the literature (e.g. Mankiw et al., 1992) and regard the number of individuals multiplied by their individual human capital endowment as effective labor force. Let population size in period $t - 1$ be denoted by L_{t-1}. The effective labor force at time t, H_t, is then given by

$$H_t = h_t n_t L_{t-1}$$

$$= \frac{\eta - \gamma}{(\beta + \eta + \kappa + 1) \tau} L_{t-1} \exp \left\{ \phi \left(\frac{\gamma \xi \tau}{\eta - \gamma} \right) + \psi \left(\frac{\kappa \zeta}{1 + \beta + \eta + \kappa} \right) \right\},$$

(13)
Note that the conventional notion of effective labor implies that quantity (as represented by the population size) and quality (as represented by individual human capital) can be substituted one for one.

We next state our central results regarding the association of demographic change and effective labor supply.

Proposition 1. A declining population originating from a lower weight of the number of children in utility is associated with an increasing effective labor force in the next period if the induced quality enhancing investments into education and health dominate the negative quantity effect.

Proof. The derivative of equation (13) with respect to η is given by

$$
\frac{\partial H_t}{\partial \eta} = \frac{1 + \beta + \gamma + \kappa}{(\beta + \eta + \kappa + 1)^2 \tau} L_{t-1} \exp \left\{ \phi \left(\frac{\gamma \xi \tau}{\eta - \gamma} \right) + \psi \left(\frac{\kappa \zeta}{1 + \beta + \eta + \kappa} \right) \right\} \\
- \frac{\eta - \gamma}{(1 + \beta + \eta + \kappa)^2 \tau} L_{t-1} \exp \left\{ \phi \left(\frac{\gamma \xi \tau}{\eta - \gamma} \right) + \psi \left(\frac{\kappa \zeta}{1 + \beta + \eta + \kappa} \right) \right\} \\
\times \left(\phi' \left(\tilde{e}_{t-1} \right) \frac{\gamma \xi \tau}{(\eta - \gamma)^2} + \psi' \left(\tilde{p}_t \right) \frac{\kappa \zeta}{1 + \beta + \eta + \kappa} \right). \tag{14}
$$

The expression is negative if the quantity effect (the first term) is dominated by the quality effect (the second term).

The economic intuition for this outcome is as follows. If parents want to have fewer children, they reduce their fertility, which directly increases spending on all other components that enter their utility function. In addition, parents spend less time on rearing children and more time supplying labor on the market and earning an income. Part of the additional income is spent on education and health. If effective years of schooling or health status or both have a large impact on individual human capital, then the negative effects of decreasing fertility on effective labor supply are overcompensated by the positive effects of increasing educational and/or health investments on individual productivity.

Formally, an overcompensation occurs if $\phi' \left(\tilde{e}_{t-1} \right)$ or $\psi' \left(\tilde{p}_t \right)$ or both are large, which is the case if changes in education \tilde{e}_{t-1} or changes in health \tilde{p}_t or changes in both have a large impact upon individual human capital. If, by contrast, education and health have only a small impact on individual human capital, then the negative effect of decreasing fertility dominates and the effective labor force declines.

Analogously, we obtain the following result.
Proposition 2. A declining population originating from a higher weight of education in utility is associated with an increasing effective labor force in the next period if the induced quality enhancing investments into education dominate the negative quantity effect.

Proof. Taking the derivative of equation (13) with respect to γ provides

$$\frac{\partial H_t}{\partial \gamma} = -\frac{1}{(1 + \beta + \eta + \kappa) \tau} L_{t-1} \exp \left\{ \phi \left(\frac{\gamma \xi \tau}{\eta - \gamma} \right) + \psi \left(\frac{\kappa \zeta}{1 + \beta + \eta + \kappa} \right) \right\}$$

$$+ \frac{\eta - \gamma}{(\beta + \eta + \kappa + 1) \tau} L_{t-1} \exp \left\{ \phi \left(\frac{\gamma \xi \tau}{\eta - \gamma} \right) + \psi \left(\frac{\kappa \zeta}{1 + \beta + \eta + \kappa} \right) \right\}$$

$$\times \frac{\xi \tau (\eta - \gamma) + \gamma \xi \tau}{(\eta - \gamma)^2} \phi' (\tilde{e}_{t-1}),$$

(15)

which is positive if the quantity effect (the first term) is dominated by the quality effect (the second term).

Intuitively, if parents want to have better educated children, they increase educational investments and reduce fertility. The reduced fertility frees time and raises labor supply and income, which is spent on the education of children. The effect on education is particularly strong because parents do not want to spend the additional income on consumption or savings (see Remark 2). Formally, if education has a sufficiently large impact on individual human capital, that is, if $\phi' (\tilde{e}_{t-1})$ is sufficiently high, the positive education effect overcompensates the negative fertility effect on effective labor supply.

Finally, we state the third observation regarding the preference for health.

Proposition 3. A declining population originating from a higher weight of adult health in utility is associated with an increasing effective labor force in the next period if the induced quality enhancing investments into health dominate the negative quantity effect.

Proof. Taking the derivative of equation (13) with respect to κ we obtain

$$\frac{\partial H_t}{\partial \kappa} = -\frac{\eta - \gamma}{(1 + \beta + \eta + \kappa)^2 \tau} L_{t-1} \exp \left\{ \phi \left(\frac{\gamma \xi \tau}{\eta - \gamma} \right) + \psi \left(\frac{\kappa \zeta}{1 + \beta + \eta + \kappa} \right) \right\}$$

$$+ \frac{\eta - \gamma}{(\beta + \eta + \kappa + 1) \tau} L_{t-1} \exp \left\{ \phi \left(\frac{\gamma \xi \tau}{\eta - \gamma} \right) + \psi \left(\frac{\kappa \zeta}{1 + \beta + \eta + \kappa} \right) \right\}$$

$$\times \frac{\xi (1 + \beta + \eta)}{(1 + \beta + \eta + \kappa)^2} \psi' (\tilde{p}_t).$$

(16)
The expression is positive if the quantity effect (the first term) is dominated by the quality effect (the second term).

The economic intuition for this result is that a higher preference for health κ raises health investments and reduces fertility. Again, less time spent on child-rearing and more labor supply provides more income which is spent on health. Moreover, the individuals reduce consumption and savings to finance additional health investments. If the impact of health status on human capital is sufficiently strong — that is, if $\psi'(\tilde{p}_t)$ is sufficiently large, the positive effect on effective labor supply dominates.

3 Empirical Assessment

Given the theoretical ambiguity, it is an interesting empirical question how large the mitigating impact of education and health on effective labor supply is and whether it is sufficiently large to overcompensate the effect of a declining population. From a micro perspective there is an ongoing debate about the existence of a quality-quantity tradeoff and it’s causal direction (see Black et al., 2005; Rosenzweig and Zhang, 2009; Angrist et al., 2010, for different views). From the macro perspective, however, we are only interested in solving the much easier problem of determining the association between fertility and human capital. Specifically we are interested in a) the association between fertility on the one hand and average education and health status of the population on the other hand and b) the association between fertility and effective labor supply.

We test whether the quantity-quality tradeoff is observable at the macro level by running regressions of the following form

$$
E_{i,t} = \delta_1 + \delta_2 b_{i,t} + \delta_3 \log y_{i,t-1} + \delta_4 \log L_{i,t-1} + \delta_5 P_{i,t-1} + \mu_i + \epsilon_t + u_{i,t},
$$

$$
P_{i,t} = \delta_6 + \delta_7 b_{i,t} + \delta_8 \log y_{i,t-1} + \delta_9 \log L_{i,t-1} + \delta_{10} E_{i,t-1} + \mu_i + \epsilon_t + u_{i,t},
$$

(17)

where i represents the cross country dimension, t the time dimension, δ_j for $j = 1,\ldots,10$ refers to the parameters to be estimated, E denotes average years of schooling of the population aged 15+ as an indicator for education, b refers to the crude birth rate as an indicator for fertility, y is PPP adjusted per capita GDP in 2005 international Dollars to control for differences in
living standards, L stands for population size to account for the possibility that in a larger economy there could be more spare resources for schooling and health care in case that fertility declines (which we do not want to capture with the coefficient estimate of the birth rate), and P refers to life expectancy at birth as a conservative indicator for population health. The reason for it being conservative is that, owing to the compression of morbidity hypothesis (cf. Fries, 1980; Mathers et al., 2001; Mor, 2005), we expect overall health to increase more strongly than life expectancy. We control for country specific fixed effects μ_i and time specific fixed effects ϵ_t, while $u_{i,t}$ represents the error term assumed to have mean zero. In these equations $\delta_2 < 0$ and $\delta_7 < 0$ would indicate the presence of a quality-quantity tradeoff effect for education and health, respectively.

In order to estimate the parameters of the regression equations we make use of data obtained from World Bank (2011)’s “World Development Indicators & Global Development Finance” database, except for the education proxy, which stems from the “Education Statistics” database and has originally been compiled by the International Institute for Applied Systems Analysis (IIASA) and the Vienna Institute of Demography (VID) (cf. Lutz et al., 2007). The data cover the time period 1980-2005 in five-year steps for 118 countries (see Appendix A for a detailed list).

Table 2 contains the coefficient estimates for fixed effects estimation. The fixed effects estimator is preferred because relative to OLS, it controls for country-specific characteristics and hence reduces the likelihood of an omitted variable bias, while equality of coefficient estimates between the fixed effects and the random effects (RE) estimator has been rejected by a Hausman test implying that the coefficient estimates obtained by RE estimation are biased.\(^5\) With time fixed effects we try to control for the impact of underlying trends that affect all countries in a similar manner.

We obtain negative estimates of the coefficients on fertility in the regressions for education (δ_2) and for health (δ_7). The estimates are significant at the 5% level with the point estimate of δ_7 being larger in absolute value than the point estimate of δ_2. This means that a quality-quantity tradeoff as described by our theoretical model is observable at the macro level.

\(^5\)The results of the OLS and RE estimators were qualitatively in line with those of the FE estimator. Furthermore, note that we do not need to apply a system estimation procedure because we use lagged values of education and health in order to explain the respective other variable.
In particular, the quality-quantity tradeoff does not only operate via the education channel but also via the health channel.

Table 2: The Quantity-Quality Trade-off at the Macro-Level

<table>
<thead>
<tr>
<th></th>
<th>education (17)</th>
<th>health (17)</th>
</tr>
</thead>
<tbody>
<tr>
<td>fertility (b_t)</td>
<td>-0.023</td>
<td>-0.276</td>
</tr>
<tr>
<td></td>
<td>(0.010)**</td>
<td>(0.111)**</td>
</tr>
<tr>
<td>income (log y_{t-1})</td>
<td>0.221</td>
<td>1.727</td>
</tr>
<tr>
<td></td>
<td>(0.103)**</td>
<td>(0.785)**</td>
</tr>
<tr>
<td>pop. size (log L_{t-1})</td>
<td>0.729</td>
<td>-2.752</td>
</tr>
<tr>
<td></td>
<td>(0.234)***</td>
<td>(2.092)</td>
</tr>
<tr>
<td>health (P_{t-1})</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.009)</td>
<td></td>
</tr>
<tr>
<td>education (E_{t-1})</td>
<td></td>
<td>-0.152</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.562)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.89</td>
<td>0.53</td>
</tr>
<tr>
<td>OBS</td>
<td>529</td>
<td>528</td>
</tr>
<tr>
<td>country fe</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>time fe</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Standard errors are reported below the coefficient estimates in parenthesis. One asterisk indicates significance at the 10% level, two asterisks indicate significance at the 5% level and three asterisks indicate significance at the 1% level. OBS refers to the number of observations.

To analyze part b) namely the question whether the quality-quantity tradeoff mitigates the negative impact of decreasing fertility on effective labor supply, we recall that effective labor is given by $H_t = h_t n_t L_{t-1}$ such that by taking the total derivative and noting that the lagged population size is constant at time t, we obtain

$$\frac{dH_t}{dn_t} = h_t + \frac{dh_t}{dn_t}n_t. \quad (18)$$

This equation states that the overall change in effective labor supply induced by a change in fertility can be decomposed into a pure quantity effect (the first term on the right hand side) and a quality effect (the second term). The quantity effect simply measures the impact of a change in fertility on effective labor supply for given individual human capital, while the quality
effect measures the impact of the associated change of education and health status.

To evaluate the interaction of the quantity and quality effect we compute the human capital elasticity of fertility,

\[\epsilon_h \equiv \frac{dh_i}{dn_i h_t}, \]

(19)

and fit the following regression:

\[
\log h_{i,t} = \delta_{11} + \delta_{12} \log b_{i,t} + \delta_{13} \log y_{i,t-1} + \delta_{14} \log L_{i,t-1} + \mu_i + \epsilon_t + u_{i,t}.
\]

(20)

The coefficient \(\delta_{12}\) provides our estimate of \(\epsilon_h\). A negative value would indicate that the quality effect mitigates the quantity effect on effective labor supply and a value lower than -1 would indicate that it overcompensates the quantity effect.

The first step in solving the problem is to specify the properties of \(\phi\) and \(\psi\) to compute human capital \(h\) from the education and health data. Given the uncertainty about the true values of the return on education and the return on health we begin by defining two benchmark cases and then provide robustness checks. Our first case follows Bloom and Canning (2005), who, based upon Psacharopoulos (1994), Bils and Klenow (2000) and Weil (2007), set \(\phi = 0.091\) and \(\psi = 0.0168\). In a second case we further distinguish between average years of primary (\(prim\)), secondary (\(sec\)), and tertiary (\(tert\)) education levels according to Hall and Jones (1999). We obtain the data regarding these measures from Barro and Lee (2010). In this case \(\phi(e_{t-1})\) becomes a piecewise linear function defined as

\[
\phi(e_{t-1}) = 0.134 \text{ prim}_{t-1} + 0.101 \text{ sec}_{t-1} + 0.068 \text{ tert}_{t-1}
\]

(21)

and we still construct human capital by including the return on health along the lines of Bloom and Canning (2005).

Results for fixed effects estimation of equation (20) are shown in Table 3. The point estimate for the elasticity of human capital (\(\delta_{12}\)) is -0.106 and -0.207, respectively. In both cases the 95% confidence interval excludes 0 as well as -1. Hence, the hypothesis that the quantity-quality tradeoff is a force strong enough to overcompensate the negative impact of declining fertility
on effective labor supply is rejected. On the other hand, our estimate also
documents that a considerable portion of the negative effect is mitigated by
the associated behavioral changes.

Table 3: Fertility and Effective Labor Supply

<table>
<thead>
<tr>
<th></th>
<th>human capital (log h_t)</th>
<th>human capital (log h_t)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>fertility (log b_t)</td>
<td>-0.106</td>
<td>-0.207</td>
</tr>
<tr>
<td></td>
<td>(0.038)**</td>
<td>(0.054)**</td>
</tr>
<tr>
<td>income (log y_{t-1})</td>
<td>0.045</td>
<td>0.020</td>
</tr>
<tr>
<td></td>
<td>(0.016)**</td>
<td>(0.017)</td>
</tr>
<tr>
<td>pop. size (log L_{t-1})</td>
<td>0.083</td>
<td>0.065</td>
</tr>
<tr>
<td></td>
<td>(0.038)**</td>
<td>(0.053)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.85</td>
<td>0.76</td>
</tr>
<tr>
<td>OBS</td>
<td>529</td>
<td>627</td>
</tr>
<tr>
<td>country fe</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>time fe</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Estimates of equation (20). Case (1) computes human capital following the approach of Bloom and Canning (2005). Case (2) follows Hall and Jones (1999). Standard errors are reported in parenthesis. One asterisk indicates significance at the 10% level, two asterisks indicate significance at the 5% level and three asterisks indicate significance at the 1% level. OBS refers to the number of observations.

We applied a number of robustness checks that in general confirm our results. We have dropped lagged income and population and obtained virtually the same estimate of ϵ_h, indicating that endogeneity bias is not a substantial concern. We then assessed the sensitivity of the parameter estimate for the human capital elasticity δ_{12} with respect to changes in the return to education ϕ and the return to health ψ in the benchmark case following Bloom and Canning (2005). We did this by assuming an upper bound of $\phi = 0.15$ and $\psi = 0.02$ and a lower bound of $\phi = 0.06$ and $\psi = 0.011$ such that the case of $\phi = 0.091$ and $\psi = 0.0168$ used by Bloom and Canning (2005) represents an intermediate variant. The results of the parameter estimate for δ_{12} and the associated 95% confidence intervals are displayed in Figure 1. Naturally, the estimate of the human capital elasticity rises when the assumed return on schooling gets bigger. For all parameterizations, the confidence interval excludes 0 and -1, meaning that the quality effect partly
mitigates the quantity effect on effective labor supply.

Figure 1: Fertility and Human Capital

Point estimates (squares) and associated 95% confidence intervals (crosses) of the human capital elasticity of fertility (ϵ_h) for the different combinations of ϕ and ψ displayed on the x-axis.

For other robustness checks we used the logarithm of the lagged crude birth rate instead of the logarithm of the birth rate as regressor, which slightly affects the estimate of the human capital elasticity without qualitatively affecting the results. Next we split the sample into OECD countries and non-OECD countries. The point estimates for ϵ_h remain negative for both groups of countries and the 95% confidence interval excludes -1. The estimate is larger in absolute terms for non-OECD countries and it is insignificantly different from zero for the OECD countries in the benchmark case of human capital following Bloom and Canning (2005), presumably also because of the smaller sample size. Finally, instead of using the IIASA/VID data regarding the mean years of schooling for the population aged 15+, we
also ran the regressions with Barro and Lee (2010)’s dataset. We obtain a somewhat higher absolute value of the elasticity but, again, the qualitative results remain unaffected.\footnote{The results of the robustness checks can be found in Appendix B.}

In a related study Lee and Mason (2010) find a much higher human capital elasticity of fertility. Measuring human capital by child expenditures for education and health as a fraction of adult wages, they obtain an elasticity with respect to the total fertility rate of -1.05. This value would indeed imply a (mild) overcompensation of the quantity effect by the quality effect. A part of the difference between their result and ours has to do with the estimation method: while Lee and Mason (2010) apply a cross section regression, we make use of a panel dataset, where we also control for country- and time-specific fixed effects, lagged per capita GDP and the lagged population size. If we drop all fixed effects and control variables from our regression, the absolute value of the parameter estimate for the elasticity of individual human capital with respect to the birth rate increases by a factor of 6.

Conceptually, our Mincerian approach, based solely on mean years of schooling and life expectancy, fails to take into account other important determinants of the quality of human capital like teacher quality and pupil-teacher ratios. These factors enter into Lee and Mason (2010)’s estimate at least approximately through child expenditures for education and health. Taken together the methodological and conceptual differences of the two studies lead us to conjecture that the “true” human capital elasticity of fertility probably lies between these two benchmark estimates.

4 Discussion

In this paper we argue that the quantity-quality tradeoff constitutes an important mechanism counteracting the negative impact of fertility decline on aggregate effective labor supply. Putting the theory to the test on the macro level we found that the quantity-quality tradeoff indeed represents a statistically significant and economically important force that mitigates the negative impact of demographic change. But we also found that, taken for itself, the quantity-quality tradeoff is not strong enough to overturn the negative effects of decreasing fertility on effective labor supply. In reality, however, the quantity-quality tradeoff is complemented and potentially am-

plified by other accounting and behavioral effects like the decline in the youth dependency ratio and therefore the emergence of a demographic dividend (cf. Bloom et al., 2003, 2010), the positive response of female labor force participation to low fertility (cf. Bloom et al., 2009), and the productivity increase of human capital owing to physical capital deepening in the wake of declining or even negative population growth (cf. Solow, 1956; Gruescu, 2007).

For a conclusion on the economic perspectives in the very long run, however, it is important to note that the quantity-quality tradeoff as well as the other mentioned behavioral responses represent level shifts rather than growth shifts. Human capital cannot be inherited by the offspring. It must be newly built by every generation. Likewise, labor force participation rates of women cannot increase indefinitely, a decline in youth dependency eventually leads to an increase of old age dependency, and capital deepening cannot lead to faster economic growth in the long run (cf. Solow, 1956). According to the conventional wisdom derived from endogenous and semi-endogenous growth theory (Romer, 1990; Aghion and Howitt, 1992; Jones, 1995; Segerström, 1998), this inevitably means that a declining effective labor force must eventually lead to a slowdown of technological progress and economic growth.

So why does the empirical literature have such a hard time identifying a drag from declining fertility on economic growth? The natural conclusion seems to be that one or several of the assumptions under which the prediction has been generated do not hold. First, as shown by Dalgaard and Kreiner (2003), the conventional wisdom is based upon the assumption of a unit elasticity of substitution between technology and effective labor (which follows from Cobb-Douglas aggregate production). With an elasticity above one, a declining effective labor force could be replaced at an increasing rate by new technology (meaning higher labor productivity) and the economy could grow indefinitely. This process would be propelled automatically via the price mechanism (by the invisible hand) as humans and their human capital become more scarce on earth and thus more precious.

Second, it may be misleading to obtain effective labor supply as the simple compound hL. In particular, raw labor is presumably easier to substitute in the production of goods and R&D than human capital. This view is empirically supported by the finding that the return to education is
not constant but rising over time (see e.g. Cawley et al., 1998; Ashenfelter et al., 1999). The return on education, with contrast to space on earth, human brains, and other physical entities, is a non-physical entity measured in terms of value, which, in principle, could grow without bound. The growth potential of an increasing return to education becomes immediately obvious if one compares the value of the knowledge acquired through a completed study of, say, today’s medical science and that of a hundred years ago. If the value of education continues to rise, our empirical results predict that, eventually, a breakeven point is reached at which the quality effect overcompensates the quantity effect. Assuming that human behavior stays constant, that is, taking the data from Table 2, this breakeven point is reached when the return to education ϕ equals 1.11. This is admittedly a large value from today’s perspective. But no theoretical reasoning rules out the possibility that it may, eventually, be reached and surpassed.

Acknowledgments

We would like to thank Carl-Johan Dalgaard, Anne Goujon, Günther Fink, Jocelyn Finlay, Samir K.C., Alexia Prskawetz, Sebastian Vollmer and participants of the “Health, Aging & Productivity” Workshop organized by the World Demographic & Aging Forum in St. Gallen 2011 for valuable comments and suggestions. We are very grateful for the financial support granted by the Max Kade foundation regarding the post-doctoral fellowship 30393 “Demography and Long-run Economic Growth Perspectives”. Support for this work was also provided by a grant from the William and Flora Hewlett Foundation and by the Program on the Global Demography of Aging at Harvard University, funded by Award Number P30AG024409 from the National Institute on Aging. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute on Aging or the National Institutes of Health.
Appendix

A The Data

The data are obtained from the World Bank (2011)’s “World Development Indicators & Global Development Finance” database and the “Education Statistics” database. It covers 118 countries over the time frame 1980-2005 in five years steps. The abbreviations for our variables are:

\[y \]: PPP adjusted per capita GDP in 2005 international Dollars

\[b \]: Crude birth rate per 1000 inhabitants

\[P \]: Life expectancy at birth

\[E \]: Mean years of schooling for the population at age 15+

\[L \]: Population size

Mean years of schooling data were available for the following countries: Argentina, Armenia, Australia, Austria, Bahrain, Bangladesh, Belgium, Belize, Benin, Bolivia, Brazil, Bulgaria, Burkina Faso, Cambodia, Cameroon, Canada, Central African Republic, Chad, Chile, China, Colombia, Comoros, Costa Rica, Cote d’Ivoire, Croatia, Cyprus, Czech Republic, Denmark, Dominican Republic, Ecuador, Egypt, El Salvador, Eritrea, Estonia, Ethiopia, Fiji, Finland, France, Gabon, Germany, Ghana, Greece, Grenada, Guatemala, Guinea, Guyana, Haiti, Honduras, Hungary, India, Indonesia, Iran, Ireland, Italy, Japan, Jordan, Kazakhstan, Kenya, Korea, Rep., Kyrgyz Republic, Latvia, Lithuania, Luxembourg, Macedonia, Madagascar, Malawi, Malaysia, Maldives, Mali, Malta, Mauritania, Mauritius, Mexico, Mongolia, Morocco, Mozambique, Namibia, Nepal, Netherlands, New Zealand, Nicaragua, Niger, Nigeria, Norway, Pakistan, Panama, Paraguay, Peru, Philippines, Poland, Portugal, Romania, Russian Federation, Rwanda, Saudi Arabia, Singapore, Slovak Republic, Slovenia, South Africa, Spain, Sri Lanka, Swaziland, Sweden, Switzerland, Syrian Arab Republic, Tanzania, Thailand, Togo, Turkey, Turkmenistan, Uganda, Ukraine, United Kingdom, United States, Uruguay, Uzbekistan, Vietnam and Zambia.
Other data also were available for Afghanistan, Albania, Algeria, Angola, Antigua and Barbuda, Azerbaijan, Barbados, Belarus, Bhutan, Bosnia and Herzegovina, Botswana, Brunei Darussalam, Burundi, Cape Verde, Congo, Dem. Rep., Congo, Rep., Djibouti, Dominica, Equatorial Guinea, Gambia, Georgia, Guinea-Bissau, Iceland, Israel, Jamaica, Kiribati, Kuwait, Lao PDR, Lebanon, Lesotho, Liberia, Libya, Moldova, Oman, Papua New Guinea, Qatar, Senegal, Serbia, Seychelles, Sierra Leone, Solomon Islands, St. Kitts and Nevis, St. Lucia, St. Vincent and the Grenadines, Sudan, Suriname, Tajikistan, Timor-Leste, Tonga, Trinidad and Tobago, Tunisia, United Arab Emirates, Vanuatu, Venezuela and Yemen.

B Robustness Checks

This appendix contains the robustness checks. Tables 4 and 5 refer to changes in the model specification as compared to equation (20). Table 6 contains the estimates for the sample split into OECD and non-OECD countries. Finally, Table 7 reports the results of estimating equation (20) in case of Bloom and Canning (2005)’s human capital specification with data obtained from Barro and Lee (2010).

Note that case (1) computes human capital following the approach of Bloom and Canning (2005), while case (2) follows Hall and Jones (1999). Standard errors are reported in parenthesis. One asterisk indicates significance at the 10% level, two asterisks indicate significance at the 5% level and three asterisks indicate significance at the 1% level.
Table 4: Results for Different Model Specifications following Bloom and Canning (2005)

<table>
<thead>
<tr>
<th></th>
<th>log h_t</th>
<th>log h_t</th>
<th>log h_t</th>
<th>log h_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>fertility ($\log b_t$)</td>
<td>-0.117</td>
<td>-0.109</td>
<td>-0.111</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.039)**</td>
<td>(0.038)**</td>
<td>(0.040)**</td>
<td></td>
</tr>
<tr>
<td>fertility ($\log b_{t-1}$)</td>
<td>-0.126</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.028)**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>income ($\log y_{t-1}$)</td>
<td>0.059</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.017)**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pop. size ($\log L_{t-1}$)</td>
<td>0.118</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.038)**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0.85</td>
<td>0.84</td>
<td>0.84</td>
<td>0.83</td>
</tr>
<tr>
<td>OBS</td>
<td>529</td>
<td>529</td>
<td>707</td>
<td>708</td>
</tr>
<tr>
<td>country fe</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>time fe</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Estimates of equation (20). OBS refers to the number of observations.

Table 5: Results for Different Model Specifications following Hall and Jones (1999)

<table>
<thead>
<tr>
<th></th>
<th>log h_t</th>
<th>log h_t</th>
<th>log h_t</th>
<th>log h_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>fertility ($\log b_t$)</td>
<td>-0.220</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.057)**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fertility ($\log b_{t-1}$)</td>
<td>-0.179</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.046)**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>income ($\log y_{t-1}$)</td>
<td>0.030</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.020)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pop. size ($\log L_{t-1}$)</td>
<td>0.112</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.056)**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0.76</td>
<td>0.76</td>
<td>0.80</td>
<td>0.78</td>
</tr>
<tr>
<td>OBS</td>
<td>626</td>
<td>627</td>
<td>848</td>
<td>848</td>
</tr>
<tr>
<td>country fe</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>time fe</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Estimates of equation (20). OBS refers to the number of observations.
Table 6: Results for Sample Split into OECD and non-OECD countries

<table>
<thead>
<tr>
<th></th>
<th>human capital (log h_t)</th>
<th>human capital (log h_t)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>OECD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>non-OECD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fertility (log b_t)</td>
<td>-0.047</td>
<td>-0.135</td>
</tr>
<tr>
<td>(0.046)</td>
<td>(0.053)**</td>
<td>(0.064)**</td>
</tr>
<tr>
<td>income (log y_t-1)</td>
<td>0.102</td>
<td>0.033</td>
</tr>
<tr>
<td>(0.042)**</td>
<td>(0.017)*</td>
<td>(0.063)</td>
</tr>
<tr>
<td>pop. size (log L_{t-1})</td>
<td>0.129</td>
<td>-0.117</td>
</tr>
<tr>
<td>(0.097)</td>
<td>(0.050)</td>
<td>(0.146)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.92</td>
<td>0.83</td>
</tr>
<tr>
<td>OBS</td>
<td>149</td>
<td>380</td>
</tr>
<tr>
<td>country fe</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>time fe</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Estimates of equation (20). OBS refers to the number of observations.

Table 7: Robustness Check with respect to Barro and Lee (2010) Data

<table>
<thead>
<tr>
<th></th>
<th>human capital (log h_t)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>according to benchmark (2)</td>
</tr>
<tr>
<td>fertility (log b_t)</td>
<td>-0.178</td>
</tr>
<tr>
<td>(0.048)***</td>
<td></td>
</tr>
<tr>
<td>income (log y_t-1)</td>
<td>0.020</td>
</tr>
<tr>
<td>(0.016)</td>
<td></td>
</tr>
<tr>
<td>pop. size (log L_{t-1})</td>
<td>0.007</td>
</tr>
<tr>
<td>(0.049)</td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0.75</td>
</tr>
<tr>
<td>OBS</td>
<td>627</td>
</tr>
<tr>
<td>country fe</td>
<td>yes</td>
</tr>
<tr>
<td>time fe</td>
<td>yes</td>
</tr>
</tbody>
</table>

Estimates of equation (20). OBS refers to the number of observations.
References

